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We investigate a recently proposed non-Markovian random walk model characterized by loss of memories
of the recent past and amnestically induced persistence. We report numerical and analytical results showing the
complete phase diagram, consisting of four phases, for this system: �i� classical nonpersistence, �ii� classical
persistence, �iii� log-periodic nonpersistence, and �iv� log-periodic persistence driven by negative feedback.
The first two phases possess continuous scale invariance symmetry, however, log-periodicity breaks this sym-
metry. Instead, log-periodic motion satisfies discrete scale invariance symmetry, with complex rather than real
fractal dimensions. We find for log-periodic persistence evidence not only of statistical but also of geometric
self-similarity.
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I. INTRODUCTION

Exact solutions of non-Markovian processes appear infre-
quently and typically generate considerable interest �see,
e.g., Ref. �1��, much more so when they involve non-
Markovian systems that undergo one or more phase transi-
tions. Here we investigate the symmetry properties and re-
port the phase diagram for the recently reported phenomenon
of amnestically induced persistence �2,3�, which allows log-
periodic �4� superdiffusion �5–7� driven by negative feed-
back. We show that a continuous scale invariance symmetry
breaks down into a discrete symmetry. We also show that the
critical line separating the log-periodic superdiffusive phase
from the diffusive phase represents a distinct, smoother,
phase transition. We report a total of four different phases for
this non-Markovian system.

Random walkers without memory have a mean square
displacement �x2� that scales with time t according to �x2�
� t2H, with Hurst exponent H=1 /2 as demanded by the cen-
tral limit theorem, assuming finite moments. Hurst exponents
H�1 /2 indicate persistence and can arise due to long-range
memory. Most random walks with and without memory dis-
play continuous scale invariance symmetry, i.e., continuous
scale transformations by a “zoom” factor � leave the Hurst
exponent unchanged: t2H→�2Ht2H as t→�t.

II. MODEL AND NUMERICAL RESULTS

Schütz and Trimper �1� pioneered a novel approach for
studying walks with long-range memory �6–9�, which we
have adapted �2� for studying memory loss. Consider a ran-
dom walker that starts at the origin at time t0=0, with
memory of the initial ft time steps of its complete history
�0� f �1�. At each time step the random walker moves ei-
ther one step to the right or left. Let vt= �1 represent the
“velocity” at time t, such that the position follows

xt+1 = xt + vt+1. �1�

At time t, we randomly choose a previous time 1� t�� ft
with equal a priori probabilities. The walker then chooses
the current step direction vt based on the value of vt�, using
the following rule. With probability p the walker repeats the
action taken at time t�, and with probability 1− p the walker
takes a step in the opposite direction −vt�. Values p�1 /2
�p�1 /2� generate positive �negative� feedback. For p suffi-
ciently larger than p=1 /2, the behavior becomes persistent
�i.e., H�1 /2�; but the finding of persistence for p�1 /2 and
small f overturned commonly held beliefs concerning repeti-
tive behavior and memory loss �2�. Very recently, Kenkre �3�
found an exact solution to this problem for the behavior of
the first moment, for all f , and generalized it in important
ways, with excellent agreement with the numerical results
over six orders of magnitude in time. Here, we investigate
how persistence depends quantitatively on memory loss and
how to characterize the important underlying symmetry
properties.

Figure 1�a� shows values of H�f , p�, estimated via simu-
lations, as a function of the feedback parameter p and the
memory fraction f . We choose an order parameter 2H−1 that
has positive values only in the persistent regime. Mislead-
ingly, only two phases may at first seem apparent, namely,
persistent and nonpersistent. However, we show further be-
low, analytically, that each of these two regimes itself con-
sists of two different phases with distinct symmetry proper-
ties, giving a total of four distinct phases.

For p�1 /2 we find classical persistence satisfying con-
tinuous scale invariance symmetry. In contrast, we find dis-
crete scale invariance symmetry �4� for p�1 /2: scale invari-
ance holds only for discrete values of the “zoom” or
magnification �k=�k �k=1,2 ,3 , . . . �. The nonpersistent re-
gime, similarly, comprises two phases: a classical diffusive
phase and a log-periodic diffusive phase �see below�. Math-
ematically, discrete scale invariance symmetry �4� involves
complex fractal �11,12� dimensions: for z=a+bi, the real
part of tz equals ta cos�b log t�, indicating log-periodicity �4�.
Spontaneous symmetry breaking indicates a distinct phase
�and eliminates the possibility of an infinite-order phase tran-
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sition� �10�. The simulation results agree well with our ana-
lytical results discussed further below �see Fig. 1�b��.

Figure 1�c� parametrically plots two independent persis-
tent walks for p�1 /2 �p=0.1 and f =0.1�. The walks appear
not only statistically but also geometrically self-similar. In-
deed, we find a pattern reminiscent of a logarithmic spiral.
We estimate a value of the critical exponent �=1 from the
double log plot �Fig. 1�d�� of the order parameter versus
�p− pc�, where pc�f� denotes the critical line separating the
diffusive and superdiffusive regimes.

III. ANALYTICAL RESULTS

We next approach the problem analytically. We choose
vt�= �1 and use the previously discussed recurrence rela-

tion, Eq. �1�. Let nf�t� and nb�t� denote the number of steps
taken in the forward and backward directions, respectively, at
time t �inclusive�. The total number of steps equals nf�t�
+nb�t�= t. For full memory, the probability to take a step in
the forward direction at time t+1, for t�1, is Peff

+ �t�=
nf�t�

t p

+
nb�t�

t �1− p�. Similarly, Peff
− �t�=

nb�t�
t p+

nf�t�
t �1− p�. So, the ef-

fective value expected at time t+1 equals vt+1
e = Peff

+ �t�
− Peff

− �t�. Since xt=nf�t�−nb�t�+x0, we obtain vt+1
e =�

xt−x0

t ,
where �=2p−1. We can interpret this result as a series of
experiments or walks at time t having the same number of
steps forwards and backwards, giving the value vt+1

e .
Now we introduce memory loss. Let the memory range be

L=L�t�=int�ft�, where int�x� denotes the integer part of x,
for 0� f �1, starting at t=0. In analogy to the results above,
we obtain vt+1

e =�
xL−x0

L .
Now we study the nth moments of xt

n. Taking Eq. �1� to
power n we get xt+1

n = �xt+vt+1�n=	i=0
n � n

i �vt+1
i xt

n−i. For all even
exponents i we know vt+1

i =1 and for odd exponents vt+1
i

=vt+1. Using the expression for vt+1
e , with x0=0, we obtain

�xt+1
n � = 	 + �xt

n� +
n�

L
�xLxt

n−1� + 	
l=1

s�n� 
� n

2l
��xt

n−2l�

+
�

L
� n

2l + 1
��xLxt

n−2l−1�
 , �2�

where 	= 1+�−1�n

2 and s�n�= n−	−1
2 . We have 	=1 for even n

and 	=0 for odd n. If s�n��1, then the sum vanishes.
In the asymptotic limit, we arrive at the following differ-

ential equation for the moments, starting from Eq. �2�:

d

dt
�xt

n� = 	 +
n�

L
�xLxt

n−1� + 	
l=1

s�n� 
� n

2l
��xt

n−2l� +
�

L
� n

2l + 1
�


�xLxt
n−2l−1�
 . �3�

For the first moment �n=1�, we obtain an equation iden-
tical to the one obtained by Kenkre �3�:

d

dt
�xt� =

�

ft
�xft� . �4�

Considering an expansion of the form �xt�
�	iAit

�i sin�Bi ln�t�+Ci�, we obtain a system of transcen-
dental equations for B and �:

� = �f�−1 cos�B ln f� �5�

B = �f�−1 sin�B ln f� . �6�

For ��0, Eq. �5� leads to a maximum value of � for B
=0, which automatically satisfies Eq. �6�. In any expansion,
the term with the largest � dominates, so B=0 should govern
the long term behavior. We find no oscillations in our simu-
lations, in agreement with this prediction. The two equations
reduce to Eq. �7� below, ruling out a log-periodic solution.
Note that for p=1, the ballistic solution forces B=0 exactly
for any f . For ��1 /2, we obtain superdiffusion �see below�.
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FIG. 1. �Color online� �a� Hurst exponent H�p , f� estimated
from simulations of non-Markovian walks that remember only a
fraction f of their distant past, with feedback parameter p. Full
circles show the edge where H=1 /2. Persistence �H�1 /2� arises
for positive �p�1 /2� as well as negative �p�1 /2� feedback. �b�
Complete phase diagram showing the four phases, plotted accord-
ing to the exact solutions given by Eqs. �12� and �14�. The dashed
line f0�p� delineates the threshold for log-periodicity and cleaves
the nonpersistent regime into two �Eq. �9��. �c� Parametric plot of
positions x1�t� and x2�t� for two realizations of log-periodic walks.
Inset shows zoom of the center �boxed area� of the logarithmiclike
spiral. Note the geometric self-similarity. �d� Double log plot of
2H−1 versus pc− p, showing critical behavior with critical expo-
nent �=1.
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For ��0, there exists a threshold defined by a continuous
set of values �p , f�, with oscillating solutions. Consider first
the case B=0, without oscillations. Then, Eq. �5� becomes

� = �f�−1, �7�

which only has solutions for f � f0�p�.
The appearance of log-periodicity breaks down continu-

ous scale invariance symmetry into a discrete symmetry. We
choose B as the order parameter for this phase transition,
shown in Fig. 2. Equations �5� and �6� imply that the angular
log-frequency B satisfies

B = �f �B/tan�B ln�f��−1� sin�B ln�f�� . �8�

Numerically solving Eq. �7�, we find the threshold f0�0�
=0.7569 for p=0, in perfect agreement with the expression

�1 − 2p�ln�1/f0� = f0/e , �9�

obtained by Kenkre �personal communication, 13 July, 2007�
for the onset of log-periodicity �3�. This critical line appears
as a dashed line in Fig 1�b�. We have found an alternative
proof of Eq. �9� starting from Eq. �7�, using the Lambert W
function. For ��1 /2, both superdiffusion and log-
periodicity appear �see below�.

We next study the second moment. If n=2 then 	=1 and
s�n�=0. Thus Eq. �3� leads to

d

dt
�xt

2� = 1 +
2�

ft
�xftxt� . �10�

Using the fact that ��x��� ��x2��1/2, we can prove that there
exists a function A�t� such that �xftxt�=A�t���xft

2 ��xt
2��1/2, with

−1�A�t��1.
For ��0 �p�1 /2�, no oscillations appear and A�t→��

=1. We can thus show that the following transcendental re-
lationship holds for the Hurst exponent, asymptotically:

H = �fH−1. �11�

This result corresponds to Eq. �7� with �=H. Consequently,
the curve

fc = 16�pc − 1/2�2 �12�

separates the diffusive and anomalous regions for p�1 /2 in
the �p , f� plane �Fig. 1�b��. The case f =1 leads to pc=3 /4, in
agreement with Ref. �1�.

For ��0, we try the expansion �xt
2��	iait

2Hi sin2�bi ln t
+ci�. We assume that the dominant terms of �xt� and �xt

2�
have the same “period” and phase difference, so that b=B
and c=C. In the log-periodic region �i.e., b�0�, we also
assume that H��, so that the solution follows from Eqs. �5�
and �6�. Indeed we conjecture that for walks lacking subdif-
fusion, ��1 /2 implies H=� always. The fact that H�� for
��1 /2 shows the importance of fluctuations and of higher
moments �2� �and raises questions about possible multifractal
scaling�. Subject to natural restrictions, the Hurst exponent
must thus satisfy

H tan�ln�f���2f2H−2 − H2� = ��2f2H−2 − H2 �13�

for ��1 /2 and H=1 /2 otherwise. The separation line of the
diffusive and anomalous phases �see Figs. 1�b� and 3� corre-
sponds to the solution of Eq. �13� with H=�=1 /2:

2��c
2

fc
−

1

4
= tan
ln�fc���c

2

fc
−

1

4

 . �14�

We obtain the critical value of fc�0�=0.3284 for the onset of
log-periodic superdiffusion, which occurs at p=0. Note that
�pc=1 /2, fc=0� represents a multicritical point.

The onset of superdiffusion thus represents a second,
smoother, phase transition. Figure 3 shows a better view of
how the order parameter 2H−1 depends on p and f . The two
phase transitions together yield a total of four different
phases. Whereas B �Fig. 2� quantifies the behavior of the first
moment, in contrast H �Fig. 3� relates to the second moment.
Figure 1�a� numerically validates the complete phase dia-
gram shown in Fig. 1�b�.

Substituting our choice of �xt
2� into Eq. �10�, with the

definition of A�t�, we obtain

FIG. 2. �Color online� The angular log-frequency B�f , p�, esti-
mated using Eq. �8�, in the nonzero region. Interpreted as an order
parameter, B quantifies a phase transition that breaks down continu-
ous scale invariance symmetry �B=0� into a discrete symmetry
�B�0�.

FIG. 3. �Color online� The order parameter 2H−1 versus p and
f in the nonzero �i.e., superdiffusive� region, estimated using Eqs.
�11� and �13�. Whereas B relates to the behavior of the first moment,
H describes the second moment.
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A�t� =
H sin�b ln t + c�2 + b sin�b ln t + c�cos�b ln t + c�

�fH−1�sin�b ln t + c���sin�b ln ft + c��
.

�15�

Semiempirically, we find that A�t�� �1. Specifically, we
propose

A�t� =
sin�b ln t + c�cos�b ln ft + c�
�sin�b ln t + c�sin�b ln ft + c��

. �16�

Note that A�t�=1 for f =1. Applying the same reasoning for
the case H=1 /2, we obtain

A�t� = f1/2�2�a�sin�b ln t + c���sin�b ln ft + c���−1


 �a sin�b ln t + c�2 + 2ab sin�b ln t + c�


cos�b ln t + c� − 1� . �17�

Thus, exactly on the critical line, we get a marginally super-
diffusive solution: �x2�t��=at ln t sin2�b ln t+c�. Numerical
simulations suggest that higher order terms in the expansion
become important near the critical line.

We next focus on finding a suitable Fokker-Planck equa-
tion �FPE�. Let Y denote the position of a walker. Consider
the conditional probability at position Y at time t+1, given
position x0 at time t=0:

P�Y,t + 1�x0,0� = P�Y + 1,t�x0,0�Peff
b �t,Y + 1�

+ P�Y − 1,t�x0,0�Peff
f �t,Y − 1� . �18�

Using the definitions of nf�t� and nb�t�, and the probabilities
to go forwards or backwards, we obtain

Peff
� �t,Y� = �1/2��1 � ��Y − x0�/t� . �19�

Substituting Eq. �19� in Eq. �18�, we get

P�Y,t + 1�x0,0� = �1/2��1 − ��Y − x0 + 1�/t�P�Y + 1,t�x0,0�

+ �1/2��1 + ��Y − x0 − 1�/t�P�Y − 1,t�x0,0� .

�20�

From this last equation, in the asymptotic limit for t and Y,
we get a FPE for x=Y, identical to the one in Ref. �1�, as
expected. The derivation of the FPE for f �1 proceeds in a
similar manner �to be published in a future paper�.

IV. CONCLUSION

In conclusion, we have uncovered the essential features of
the phase diagram for this problem, based on numerical as
well as analytical results. We expect the phase diagram and
other findings reported here to contribute towards a better
quantitative description of persistence in diverse economic
�13�, sociological �14�, ecological �15�, biological �5,15�, and
physiological �5� complex systems where recent memory
loss may play a role �2�. We have found preliminary evi-
dence of similarities between the log-periodic oscillations
studied here with those found associated with financial
bubbles �4�. In summary, an important result reported here
relates to the atypical breaking of a continuous symmetry
into a discrete one for a one-dimensional system. Another
important result concerns the existence of a second phase
transition which leads to a critical threshold of memory loss
for the onset of superdiffusion.
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